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A STRENGTH AND DAMAGE MODEL FOR ROCK UNDER
DYNAMIC LOADING

Oleg Yu. Vorobiev, Tarabay H. Antoun, Ilya N. Lomov, Lewis A. Glenn

Lawrence Livermore National Laboratory, Geophysics and Global Security Division, Livermore, CA  94550

Abstract. A thermodynamically consistent strength and failure model for granite under dynamic
loading has been developed and evaluated.  The model agrees with static strength measurements
and describes the effects of pressure hardening, bulking, shear-enhanced compaction, porous
dilation, tensile failure, and failure under compression due to distortional deformations.  This
paper briefly describes the model and the sensitivity of the simulated response to variations in the
model parameters and in the inelastic deformation processes used in different simulations.
Numerical simulations of an underground explosion in granite are used in the sensitivity study.

INTRODUCTION

Modeling the dynamic response of rock materials is a challenging area of research.  Since most strength
measurements in rock materials are performed for intact samples under static conditions, the models
based on these data should account for possible scale and rate effects when being applied to simulation of
the dynamic response of large-scale rock masses.  Unlike intact rock samples, rock masses may contain
discontinuities that may reduce the strength.

We assume that the material is isotropic and apply the mathematical structure of plasticity theory to
capture the basic features of the mechanical response of geological materials.  We use experimental data
obtained under static conditions to calibrate the model for small intact samples and then fit rate- and
scale- dependent model parameters to describe the dynamic measurements in spherical shock waves for
large scale motion of rock masses in underground explosions.

CONSTITUTIVE EQUATIONS

To model the dynamic response of material to shock wave loading, the system of equations representing
the mass, momentum and energy conservation laws is supplemented by the following equation for the
unimodular tensor of elastic distortional deformation B [1].
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shear modulus, ρρ0  and ρρ are the initial and the current density and Φ is the reference porosity. In Eq.(1),
Γp specifies the plastic response of the material and is taken to be a function of the von Mises effective

stress σ e  and the yield strength Y [2]:
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The conservation laws are integrated numerically using the second order Godunov scheme. Eq. (1) is
integrated using the velocity gradient tensor L  and it's symmetric part, D, approximated by solving the
Riemann problem. More details about the numerical algorithm can be found in [3].

STRENGTH OF MATERIAL

The physical phenomena that influence the yield strength Y are taken into account using a
multiplicative form with Y  given by:
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The reference (i.e., virgin) strength of the rock, Y p0 ( , )π , is a decreasing function of crack density,

π, which is assumed to be zero for intact rock samples. We assume that at high pressures  when the
mobility of the rock blocks in jointed rock masses  is low, the strength is approaching the value for a
single block which is equivalent  to the  strength of small intact rock samples measured in laboratory
conditions.
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F1 is specified in terms of hardening parameters ξ  by the form F k1 11 1= + −( )ξ , where the value of k1
gives the maximum strength hardening when ξ = 1. The hardening parameter ξ  is determined by  an

evolution equation of the form
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The pressure hardening function F2  is known from the experiments  with small samples [4] . Besides

eq.(3) it is also used in eq.(5) to avoid the pressure  dependence  of  the slope of stress-strain curve  at the
beginning of plastic flow.

The damage function F3  specified by (6) makes material weak at  low pressures p p≤ 0  once it is

damaged.
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The damage parameter, Ω, used in the function F3( )  is evaluated using the relation
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where  Tmax  is the most compressive principal stress, Tth  is the threshold stress for damage growth,
and ττdam is a characteristic time for damage.  The damage  begins to accumulate when the hardening

parameter ξ  is equal to unity. This happens when von Mises stress reaches   the failure surface  (see

Figure 1). According  to eq.(5) more plastic strain is required to reach failure surface at high pressures .
This is also observed  in experiments [9] .

F4  is a function of the Lode angle described in [1] and F5 given by (8) models the effect of melting

at high pressures, where  ε ρm ( )  is the specific melting energy.
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FIGURE 1. Yield and failure surface  for granodiorite  used in calculations (solid curves) together
with the data of static tests [4] (points).

POROSITY EVOLUTION AND BULKING



The total gas porosity is separated into two parts

φ φ φg g g= +1 2 (9)

The part  φg1 describes the initial porosity as well as porosity accumulated in tension. The evolution

equation for this part is given by (10)
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In eq.(10) φg1min  is the minimum value attained by φg1 during the entire process. The value of φd
*  is

found by inverting a linearized equation of state (11) which would give the pressure p pd= −  at given

volume J  and specific energy ε .
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In eq.(11) C  is the sound speed and Γ  is Gruneisen coefficient.

The value φc
* is a function  of volume and porosity (12) that is used to characterize the compaction curve.
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Function  F8  in  eq.(12) models effect of shear enhanced compaction and is expressed as
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Other parameters  in eq.(12) are given by
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The part φg2  models the porosity due to bulking. The evolution of bulking porosity is given by eq.(15).
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The value of φ* specifies the maximum bulking porosity that can be achieved, the function md
determines the rate of bulking and mc  is used to control the rate of recompaction of the bulking porosity
which takes place when material is damaged and F3 0→ . The rate of dissipation Q due to plastic

deformations in eq.(15) is given as
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Figure 2 shows how well it is possible to fit this model to laboratory bulking data.
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FIGURE 2. Volume strain as a function of pressure for granodiorite during uniaxial stress loading at
several confining  pressures. The points are experimental data [4], the solid and dashed lines are
calculations with different values for md0 .

  

EFFECT OF MODEL PARAMETERS



To study the effect  of the model parameters on the material response in a large scale motion we have
simulated a spherical explosion in granite with different yield strength functions.  The divergent flow of
spherical shock loading leads to a wide variety of stress states in contrast to plane waves, where the locus
of all states is represented by a straight line in yield-pressure space. The source was modeled using ideal
gas with granite density. We used a Mie-Grüneisen EOS for the granite. A more general tabular EOS was
subsequently employed and produced similar results.  We found that the first four functions in eq.(3)
determine the response of the material the most. The strain and  pressure hardening  functions are taken to
fit the static excperiments  [4]. We assume that the main difference in strength is due to the existence of
cracks in joint rock masses modeled by  Y p0 ( , )π  function. The rate dependence  of  damage  modeled

by  function F3 . It has been shown in previous research  [5, 9] that yield strength degradation is required to

obtain a deep and wide rebound signal. Since the typical time  of events for large scale motion is of an
order of 1 s, choosing ττdam a smaller value will lead to required damage.

Results from the spherical explosion simulations are shown in Figures 3 and 4.  Figure 3
compares simulated and measured particle velocity and particle displacement histories at two different
ranges away from the source.  Figure 4 compares simulated and measured peak velocity and displacement
attenuation as a function of slant range.

The velocity waveforms are characterized by a positive phase representing the outward motion of the
rock, followed by a rebound phase during which the material contracts and displaces radially inward
toward the explosive source.  Analysis of the simulation results made it possible to associate processes in
the constitutive model with measured waveform features.  For instance, the peak particle velocity
attenuation as a function of scaled slant range, shown in Figure 3(a), is strongly influenced by porous
compaction (in addition to its characteristic dependence on the divergent flow field).  This attenuation is
further complicated by the yielding and damage processes that determine the residual strength of the
material behind the shock front.  A stronger material allows more of the release waves emanating from the
explosive source to catch up with the main shock front and cause it to attenuate at a faster rate, thereby
diminishing the peak velocity amplitude.
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FIGURE 3.  Comparison of simulated and measured radial velocity and displacement histories from an
underground explosion in granite.

The width of the positive phase of the velocity waveform is strongly dependent on bulking.  The
increased volume associated with bulking causes the pressure in the material to be higher than it would be



if bulking was suppressed.  The work done by this higher pressure causes an increase in the outward
displacement of the rock.  This effect is manifested as a widening of the positive phase of the simulated
velocity waveforms.  It is also manifested as an increase in the peak displacement observed at various
ranges away from the explosive source.  The peak displacement attenuation is depicted in Figure 4(b).  As
shown, the simulation results are in general agreement with the experimental data from several spherical
wave experiments in granite.

The rebound phase in the velocity records is largely due to yielding and damage.  As the main wave
propagates outward from the source, the material behind the shock front first yields then fails due to the
accumulation of damage.  The damaged region encompasses a portion of the flow field nearest the charge
cavity, while the yielded region extends further out into the flow field.  Our simulations show that the
material behavior during the rebound phase is strongly influenced by the impedance mismatch at the
interface between the yielded and damaged regions: the larger the mismatch, the more prominent the
rebound.
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FIGURE 4. Comparison of simulated peak attenuation with measurements from several spherical wave
experiments in granite.

CONCLUSIONS

A new scale-dependent strength and damage model has been developed which gives good agreement
with both static tests and dynamic measurements of large scale motion caused by underground explosions.
The model includes effects of bulking, pressure hardening and damage due to distortional deformations
which are found to be important to simulate the material response especially in spherical loading.
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